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ABSTRACT

A method for noise analysis of microwave multiports
with general internal topology is presented. The mul-
tiport circuit is seperated into the connection circuit
and the circuit elements. Based upon the digraph
representation of the connection circuit the scatter-
ing matrix of the connection circuit is computed from
the fundamental cut set matrix and the fundamen-
tal loop matrix of the connection circuit. From this
and the S—parameters of the circuit elements and the
correlation spectra of the internal noise sources the
S—-matrix of the multiport and the correlation ma-
trix of its external equivalent noise sources may be
determined directly. Circuit elements may be noisy
two—terminal elements as well as noisy n—terminal el-
ements and noisy multiports.

1 Introduction

A new method for the topological analysis of linear
noisy maultiports with arbitrary internal topology is
presented. A method for evaluating the scattering pa-
rameters of linear n—ports with general internal topol-
ogy based on a seperation of the n—port circuit into
the connection circuit and the circuit elements has
been described in [1]. The noise analysis is based on
the correlation matrix description of the noise power
spectra [2,3]
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2 The Topological Analysis of
the Circuit

We consider linear noisy multiports with arbitrary in-
ternal lumped circuit structure. The circuit elements
are two—terminal elements, n-ports and grounded n-
terminal elements. The circuit may be seperated into
a connection circuit and the circuit elements. The
connection circuit contains a branch for each exter-
nal port of the multiport and for each port of a cir-
cuit element. The connection circuit is represented
by a digraph (directed graph). The branch currents
and branch voltages of the connection circuit are rep-
resented by the vectors V and I respectively. The
topological analysis of the connection circuit is based
on the cut-set analysis and the loop analysis.

As an example we consider the amplifier circuit with
two amplifier stages paralleled via Wilkinson power
dividers shown in Fig. 1. The corresponding circuit
graph is shown in Fig. 2. The circuit graph exhibits
three components with the datum nodes dy, dy and
d3. The direction of the branches is choosen arbi-
trarily and the directions of the loops and cut sets is
determined by the assocciated links and twigs respec-
tively.

Following [1] we introduce the eztended fundamental
loop matriz Kg and the extended fundamental cut set
matriz Qg.

(Ke)vu = (1)

1 if branch g is a link in loop v and has
the same reference direction as loop v

-1 if branch p is a link in loop v and has
opposite reference direction as loop v

0 if branch g is no link or not in loop v
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(QB)vu = )
1 if branch g is a twig belonging to cut set v
and has the same direction as cut set v
—1 if branch p is a twig belonging to cut set v
and has the opposite direction as cut set v
0 if branch p is not in cut set v.

For a circuit graph with b branches the dimension of
Kg and Qg is b x b. If the circuit graph has n nodes
and consists of k components any forest of the circuit
graph exhibits n—k twigs and [ = b—n+k link. The
Kirchhoff voltage law (KVL) equations based on the
fundamental loops associated with a chosen forest F

are
KpV =0 (3)

and the Kirchhoff current law (KCL) equations based
on the fundamental cut sets associated with F are

4)

We denote the waves incident into the connection cir-
cuit with a and the waves scattered by the connection
circuit with b. The vectors are given by

QegI=0

b=1 (g7'V—gI) (5)

__1 -1

where g is a diagonal matrix formed by the square
roots of the characteristic impedances assigned to the
branches of the connection circuit.

We introduce the connection matrix T, relating the
waves a flowing into the connection circuit to the
waves b scattered from the connection circuit by
b = I'a. The matrix I is given by

r=(gQeg ' +8 'Kpg) ™ (5Qug™' - g‘lKE(g))
6

3 The Circuit Scattering and
Correlation Matrices

A linear noisy circuit is completely described by its
signal transmission matrix and the correlation ma-
trix of the noise sources. For stationary noise signals
amplitude spectra may only be defined for the cut
time signals [3]. In the following a subscript T de-
notes the time windowing of the signal in the interval
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[-T,T]. We subdivide the vectors ap and by de-
scribing the amplitudes of the waves flowing into the
connection circuit and scattered by the connection
circuit into the vectors ayr and byp assigned to the
external ports of the connection circuit and the vec-
tors asr and bar describing the waves flowing from
and to the connection circuit. The circuit elements
are described by

(M

is the circuit element S—-matrix and the vec-

tor aZl represents the equivalent noise wave sources

of the circuit elements. The power spectra of these

noise wave sources are given by the correlation matrix
s 5t

% <32T32T> (8)

By appropriate numbering of the circuit element
ports SE and CZ' are of block diagonal type, where
each block corresponds to a circuit element. If a lin-
ear passive circuit element described by the S—-matrix
S; exhibits only thermal noise the corresponding cor-
relation matrix is given by

1
=3z (9)

whereas the correlation matrices of the active circuit
elements may be obtained from measured noise pa-
rameters {3]. From eq. (7) we obtain the circuit equa-
tions in tableau form

El Bl
asr = S%'bar + ayp

where SE!

CE!' = lim
T—oo

Cf = =KTo (1~ 8:5})

ar

Ty1 -1 Ty 0 b 0

sy 0 Iy -1 a“‘ = 0

0 0 1 —SF bZ all
(10)

The solution of the tableau equations (10) by matrix
inversion is

-1
bip = [Pn +T15 (1 — SFry) SElrzl] air
(11)

From this we obtain the S—matrix S and the correla-
tion matrix C° of the multiport

+I'2 (1 - SElrzz)—l aZErIIv

S=T1+D12 (1 -8%Ty) " sBr,,  (12)
c® = MmcF'mt (13)

with the transformation matrix M given by
M =T3 (1 - SETy,) ™" (14)



M! is the Hermitean conjugate of M. For the nu-
merical solution of the tableau equations advanced
methods will be used instead of matrix inversion.

For the circuit elements given in Table 1 the calcu-
lated S-parameters and noise parameters are depicted
in Figs. 3, 4 and 5.

4 Conclusion

Compared with known methods based upon the S-
matrix representation there are no restrictions in
the circuit topology, and compared with topological
methods based on signal description by voltage and
current amplitudes this methods yields well condi-
tioned equations for any linear circuit elements and
for an arbitrary choice of of the circuit forest.
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Figure 3: Magnitude of S Parameters
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Branch | Flement

3,4 line 50 * /202
5 C= 5.03pF
6 L=4.78nH
7,8 NE64535
9 L=10.8nH
10 C= 1.67pF
11,12 | line 50 % v/29
13,14 | line 50 + /20
15 C= 5.03pF
16 L= 4.78nH
17,18 | NE64535
19 L= 10.8nH
20 C= 1.67pF
21,22 | line 50 x /292
23 R= 1002
24 R= 10012
Zo = 508}

Table 1: Circuit elements of the amplifier circuit
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Figure 1: Amplifier circuit
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Figure 2: The circuit graph
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