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ABSTRACT

A method for noise analysis of microwave multiports

with general internal topology is presented. Themul-

tiport circuit is seperated into the connection circuit

and the circuit elements. Based upon the digraph

representation of the connection circuit the scatter-

ing matrix of the connection circuit is computed from

the fundamental cut set matrix and the fundamen-

tal loop matrix of the connection circuit. From this

and the S–parameters of the circuit elements and the

correlation spectra of the internal noise sources the

S–matrix of the multiport and the correlation ma-

trix of its external equivalent noise sources may be

determined directly. Circuit elements may be noisy

twc%erminal elements as well as noisy n–terminal el-

ements and noisy multiports.

1 Introduction

A new method for the topological analysis of linear

noisy multiports with arbitrary internal topology is

presented. A method for evaluating the scattering pa-

rameters of linear n–ports with general internal topol-

ogy based on a separation of the n–port circuit into

the connection circuit and the circuit elements has

been described in [1]. The noise analysis is based on

the correlation matrix description of the noise power

spectra [2,3]
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2 The Topological Analysis of
the Circuit

We consider linear noisy multiports with arbitrary in-

ternal lumped circuit structure. The circuit elements

are t we–terminal elements, n-ports and grounded n–

terminal elements. The circuit may be seperated into
a connection circuit and the circuit elements. The

connection circuit contains a branch for each exter-

nal port of the multiport and for each port of a cir-

cuit element. The connection circuit is represented
by a digraph (directed graph), The branch currents
and branch voltages of the connection circuit are rep-
resented by the vectors V and I respectively. The

topological analysis of the connection circuit is based

on the cut-set analysis and the loop analysis.

As an example we consider the amplifier circuit with

two amplifier stages paralleled via Wilkinson power

dividers shown in Fig. 1. The corresponding circuit

graph is shown in Fig. 2. The circuit graph exhibits

three components with the datum nodes dl, dz and

d3. The direction of the branches is choosen arbi-

trarily and the directions of the loops and cut sets is

determined by the associated links and twigs respec-

tively.

Following [1] we introduce the extended fundamental

loop matrix KE and the extended fundamental cut set

matrix QE.

(KE)VP = (1)

{

1 if branch p is a link in loop v and has

the same reference direction as loop v

-1 if branch p is a link in loop v and has

opposite reference direction as loop v

O if branch p is no link or not in loop v
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(QE).. = (2)

{

1 if branch p is a twig belonging to cut set v

and haa the same direction as cut set v

-1 if branch p is a twig belonging to cut set v

and haa the opposite direction as cut set v

O if branch p is not in cut set v.

For a circuit graph with b branches the dimension of

KE and QE is b x b. If the circuit graph has n nodes

and consists of k components any forest of the circuit

graph exhibits n – k twigs and 1 = b – n + k link. The

Kirchhoff voltage law (KVL) equations based on the

fundamental loops associated with a chosen forest Y’

are

KEV = O (3)

and the Kirchhofl current law (KCL) equations based

on the fundamental cut sets associated with F are

QEI = O (4)

We denote the waves incident into the connection cir-
cuit with a and the waves scattered by the connection
circuit with b, The vectors are given by

a=~(g ‘IV + gI) b = ; (g-lV – gI) (5)

where g is a diagonal matrix formed by the square

roots of the characteristic impedances assigned to the

branches of the connection circuit.

We introduce the connection matrix I’, relating the

waves a flowing into the connection circuit to the

waves b scattered from the connection circuit by

b = I?a. The matrix I’ is given by

r = (gQEg-l + g-lKEg)-l (gQ~g-l –g-l&g)
(6)

3 The Circuit Scattering and
Correlation Matrices

A linear noisy circuit is completely described by its
signal transmission matrix and the correlation ma-
trix of the noise sources. For stationary noise signals

amplitude spectra may only be defined for the cut

time signals [3]. In the following a subscript T de-

notes the time windowing of the signal in the interval

[–T, T]. We subdivide the vectors aT and bT de-

scribing the amplitudes of the waves flowing into the

connection circuit and scattered by the connection

circuit into the vectors alT and blT assigned to the

external ports of the connection circuit and the vec-

tors azT and b2T describing the waves flowing from

and to the connection circuit. The circuit elements

are described by

a2T = SE’bzT + a$j (7)

where SE’ is the circuit element S–matrix and the vec-

tor a;- represents the equivalent noise wave sources

of the circuit elements. The power spectra of these

noise wave sources are given by the correlation matrix

(8)

By appropriate numbering of the circuit element

ports SE? and CE~ are of block diagonal type, where

each block corresponds to a circuit element. If a lin-

ear passive circuit element described by the S–matrix

S; exhibits only thermal noise the corresponding cor-

relation matrix is given by

Cf = *kT” (’-s’+)
(9)

whereas the correlation matrices of the active circuit

elements may be obtained from measured noise pa-

rameters [3]. From eq. (7) we obtain the circuit equa-

tions in tableau form

(lo)
The solution of the tableau equations (10) by matrix

inversion is

b~T =
[ 1rll + r12 (1 – sEk22)-1 sErr21 a~~

+r12 (1 – sEY22)’1 a;, (11)

From this we obtain the S–matrix S and the correla-

tion matrix Cs of the multiport

s = rll + r12 (I – sEk22)-1 sE[r21 (12)

& = MfJ~~@ (13)

with the transformation matrix M given by

M = r12 (I – sEk22)-1 (14)
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M.t is the Hermitean conjugate of M, For the nu-

merical solution of the tableau equations advanced

methods will be used instead of matrix inversion.

For the circuit elements given in Table 1 the calcu-

lated S-parameters and noise parameters are depicted

in Figs. 3, 4 and 5,

4 Conclusion

Compared with known methods based upon the S-

matrix representation there are no restrictions in

the circuit topology, and compared with topological

methods based on signal description by voltage and

current amplitudes this methods yields well condi-

tioned equations for any linear circuit elements and

for an arbitrary choice of of the circuit forest.
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line 50* ti2t2
C= 5.03pF
L= 4.78nH
NE64535
L= 10.8nH
C= 1.67pF

line 50* @l

line 50* fitl
C= 5.03PF
L= 4.78nH
NE64535
L= 10.8nH
C= 1.67pF
line 50 * /Zfl
R= 1000
R= 100C?
Zo = 5ofl

Table 1: Circuit elements of the amplifier circuit
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Figure 5: Parameters YOP$ = BoPt + jGoPt and R.
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Figure 1: Amplifier circuit
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Figure 2: The circuit graph
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